
1

Synology Notification Service 

White Paper
Based on DSM 6.0.3



2

Overview 3

Terms 3

Diffie–Hellman Key Exchange 4

Encryption and Decryption Flow 4

Server encryption
Client decryption

Revocation Mechanism 5

Browsers
Mobile devices
Server

Table of Contents

Synology_Notification_Service_WP_20170710



3

Overview
This white paper explains the encryption mechanism when Synology services are 
transmitting push notifications to users’ mobile devices via third-party services, 
such as Synology Notification Service (SNS), Apple Push Notification Service (APNs), 
and Google Cloud Messaging (GCM). Encryption is enforced during data delivery to 
ensure the confidentiality of messages.

This encryption mechanism adopts the following techniques: 

• Diffie–Hellman key exchange (D–H) and symmetric key algorithm are applied to this 
mechanism.

• Different keys are utilized by different users, devices, and packages.

• Plain messages are not allowed when this mechanism is activated.

Details regarding the encryption–decryption procedure is provided in the following 
sections. 

Terms
Explanations of the relevant terms mentioned in this document are offered as 
follows: 

• APNs is the acronym for Apple Push Notification Service, a notification service hosted 
by Apple to push notifications to iOS devices.

• Clients refer to mobile applications (Android and iOS), browser extensions (Chrome 
and Safari), and web browser push notifications (Chrome and Firefox). 

• GCM is the acronym for Google Cloud Messaging, a notification service hosted by Google 
to push notifications to Android devices.

• Server refers to Synology Application Service (SAS) installed on DSM. 

• SNS is the acronym for Synology Notification Service, a public cloud service hosted by 
Synology to push messages to APNS and GCM.



4

Diffie–Hellman Key Exchange
Key exchange is the first step of encryption and the procedure is initiated from 
clients to the server.1 Clients use crypto_kx_* functions to initiate key exchange to 
the server according to the following steps:

1. Clients generate key pair, pk, and sk using crypto_kx_keypair().

2. Clients send the Exchange API request to the server.

3. Adopting the function crypto_kx_client_session_keys, clients utilize public_key and 
their own key pairs to generate sharedRx and sharedTx.

4. Clients use base64 + JSON.parse to decrypt encrypted_data and to obtain nonce and 
ciphertext.

5. Clients bring sharedRx, nonce, and ciphertext into the function crypto_secretbox_
open_easy to obtain secret_key. 

Encryption and Decryption Flow
The push notification procedure can be divided into two parts, namely, server 
procedure and client procedure. The encryption–decryption procedure adopts the 
crypto_box_easy_afternm function and standardizes the results according to JSON 
encoding and Base64 encoding formats, enabling both the client and server sides to 
process encryption and decryption. Details regarding the procedure are provided in 
the following:

Server encryption
encrypted_data is added to the original event_contents of the JSON object 
parameter to ensure the downward compatibility. The encryption procedure is 
shown below: 

1. SNS will proceed the notification delivery in the original way if the encryption function is 
disabled.

2. raw_data is set as the assigned or default message, with the default message showing “You 
have encrypted messages”.

3. Only raw_data will be transmitted to SNS if the clients do not have secret keys.

4. Secret keys and notifications are brought in and crypto_secretbox_easy is executed to 
encrypt messages; subsequently, nonce and ciphertext are obtained. All the relevant 
data will be placed in encrypted_data.

5. Encrypted data will be transmitted to SNS after it is encoded by base64.

1. Prerequisite: the server’s public key must be known by all the clients. 



5

Client decryption
Client devices should be capable of processing push notifications before the message 
content is displayed. The decryption procedure is shown below:

1. The client device receives a push notification and retrieves raw_data as the notification 
message.

2. The client device will leave the decryption flow if the encryption function is disabled or if 
the device has no secret_key.

3. The client device uses base64 to decode encrypted_data; if failed, the device will leave 
the decryption flow.

4. The client device examines whether the function value is crypto_secretbox_easy; if 
failed, the device will leave the decryption flow.

5. The client device brings nonce, ciphertext, and secret_key into crypto_secretbox_
open_easy to obtain a notification message.

Revocation Mechanism
Disabling push notifications will cause the secret keys to be revoked from different 
client devices.

Browsers
When a user unpairs with the server, the associated browsers will clear the secret 
key and send the unpair request to the server.

Mobile devices
A client will send the unpair request to the server and clear the secret key when 
logging out.

Server
The server will clear the correspondent secret key when the unpair request is 
received.


	Overview
	Terms
	Diffie–Hellman Key Exchange
	Encryption and Decryption Flow
	Server encryption
	Client decryption

	Revocation Mechanism
	Browsers
	Mobile devices
	Server


